
Assuming that the acoustic disturbances are, in this case, small in comparison with the 
vortical (3) and entropic (2) ones, from the diagram (Fig. 6) one can determine the intensity 
of the vortical mode <u> = 0.64% and entropic mode <T> = 0.20% with a correlation coeffi- 
cient between them RuT = -~.73. The measurements with the constant-temperature anemometer 
(for one overheat ratio) do not allow one to obtain any information about fluctuations except 
approximate values of the intensity of the mass flow rate fluctuations <m> = ~(r)/r = 0.87%. 
Consequently, for high subsonic velocities, it is advisable to use constant-current anemo- 
meters in order to obtain fluctuation diagrams and to separate modes of disturbances. Then, 
the form of the diagrams for the vortical and entropic modes is analogous to the diagram for 
supersonic velocities, and the diagram of acoustic disturbances may consist of two elements 
of a straight line intersecting at the abscissa. 
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ASYMPTOTIC ANALYSIS OF FLOW INSTABILITY IN A COMPRESSIBLE BOUNDARY 

LAYER ON A CURVED SURFACE 

A. M. Tumin and Yu. P. Chernov UDC 532.52 6.013 

A nonviscous instability mechanism exists in a two-dimensional boundary layer on a 
curved surface, as a result of which there appear pairs of vortices oriented along the flow 
and rotating in opposite directions. These are commonly termed GSrtler vortices (Fig. I). 
With increase in intensity of these vortices down the flow they may cause a transition of 
the laminar boundary layer into a turbulent one. In experiments in the boundary layer tran- 
sition region they manifest themselves as periodically distributed thermal fluxes, shear 
stresses, etc., in a direction transverse with respect to the direction of the main flow in 
the boundary layer (see, for example, [i, 2], and the bibliography presented in [3]). There 
is interest in boundary layer stability on a curved surface because the supercritical pro- 
files which have been designed in the past have segments with quite large curvature, so that 
a transition to a turbulent boundary layer develops under the action of centrifugal forces 
[4]. Aside from this, the effect of surface curvature on the character of the flow in the 
boundary layer requires special attention in design of nozzles for low noise supersonic tubes 
[5]. Reviews of preceding studies of boundary layer instability on curved surfaces were 
presented in [3, 6, 7]. In our opinion, the main unique feature of this problem is that in 
comparison to Tollmin-Schlichting wave instability or instability of secondary flows in a 
boundary layer in the vicinity of an edge in arrowlike wings, GSrtler vortices are character- 
ized by a weak intensity of motion and relatively slow intensification down the flow. Hence 
in analyzing the flow stability in the general case it is necessary to preserve those terms 
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of the linearized Navier-Stokes equations which are usually related to the effects of the 
nonparallel nature of the flow. On this question we must note the studies [8-10], which 
considered the effect of boundary layer suction and cooling, as well as that of the pressure 
gradient on flow stability. In [ii] an asymptotic expression was obtained for the neutral 
stability curve for the case of an incompressible boundary layer, where the spatial period 
of the vortices in the transverse direction is small in comparison to the boundary layer 
thickness. The problem of boundary layer stability on a curved surface was analyzed in [12] 
within the framework of a numerical solution of equations in partial derivatives. Attention 
was called to the fact that the two-term asymptotic expression found for the neutral stability 
curve proved convenient over a quite wide range of the parameter characterizing the linear 
size of the vortices in the transverse direction. The present study will present a generali- 
zation of the results of [Ii] to the case of G~rtler vortices increasing in intensity down 
the flow in a compressible boundary layer, which permits derivation of simple approximate 
relations which can be used in engineering practice. 

i. Formulation of the Problem. We consider as the basic flow a two-dimensional compres- 
sible boundary layer on a slightly curved surface. Following [I0], we will use a coordinate 
system (x, y, z) based on flow and equipotential lines for a nonviscous flow on a curved sur- 
face. The coordinate x is directed along the flow line, the y coordinate along the equi- 
potential line, and the z coordinate, normal to the plane (x, y). For the characteristic 
length scale we choose 6 = /v~x/U~, where U~ is the velocity of the incident flow; v~ is the 
kinematic viscosity coefficient in the incident flow. For the pressure scale we choose p~U~ 
(where p~ is the density in the incident flow). Temperature will be measured in units of 
the incident flow temperature T~. The problem to be analyzed is characterized by two small 
parameters: e 0 = R -I = /~/U~x, the viscous parameter; k = (K6) I/~, the curvature parameter 
(where K is the curvature of the surface flowed over). We will consider the limit E0, k + 0, 
so that G = k/e 0 = const (G is the GSrtler constant). Then as the basic approximation for 
the main flow we obtain the equations of a boundary layer on a planar plate. Concerning 
perturbations of the x-, y-, and z-components of the velocity u, v, w, the pressure p, and the 
temperature O , we assume that they are of the following order of magnitude [I0]: u =O(I), 
v = O ( R - 1 ) ,  w = O ( n - 1 ) ,  p = O ( R - 2 ) ,  0 = O ( l ) .  

These relationships between the defining parameters have been confirmed by experimental 
observations and direct numerical calculations [3]. If we choose as the length scale along 
the coordinate x L = R6 and seek a solution for the perturbations, having separated them by 
order of magnitude, in the form 

u = u(y)cos~z.exp(~odx), v =  v(y)cos~z.exp(~ gdx), 

then from the linearized Navier-Stokes equations we obtain a system of ordinary differential 
equations [I0] (there are errors in the expressions of [I0] which can easily be seen from 
simple calculations). For the equations thus obtained we formulate boundary conditions: u, 
v, w, O + 0 as y § ~; u, v, w = 0 at y = 0. If the surface flowed over is thermally isolated, 
then at y = 0 the condition 00/Oy = 0 must be satisfied. If the temperature of the surface 
flowed over has a fixed temperature, then at y = 0 we must have @ = 0. 

The problem thus formulated is one of eigenvalues, in which a relationship between the 
material parameters o, ~, G must be established. 

2. Asymptotic Analysis. We will seek an asymptotic solution of the problem formulated 
where ~, G are large. Then, as in [Ii], the effects of the nonparallel nature of the flow 
become insignificant. If we take G ~ 0(62), then from analysis of the equations we arrive at 
the conclusion that v = O(~2u), @ = O(u). AS in [ii], in the asymptotic limit ~ + ~ we find 
that perturbations are localized inside a thin layer located at a distance y+ from the wall, 
while the layer thickness is of the order of $-i/2. The meaning of this inner layer is that 
therein there is established a balance of centrifugal, convective, and viscous terms of the 
linearized Navier-Stokes equations. In analogy to [ii], we conclude that within the layer 
it is necessary to seek a solution in the form of expansions 

~) = vo(~) + ~l/~v~(~) + ~v~(~) + ... ,  f (~)  = ~Uo(~) + ~/~u~(~) + 

+ ~ u ~ )  + ..., ~ ( ~ ) =  ~/~Wo(~) + ~w~(~) + ~/~w~(~) + .... ~(~) = 
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o.r f l  ~,o 

F i g .  3 

§ ~3O~(n) § . . . ,  G ~ = ~-~(go + ~i/~g~ + ~g2 + . . .) ,  n = (Y y+)l~l/~ 
~ - 1  

We take the rate of intensification o as given and write o = ~-2o 0. Thus, o 0 is a mea- 
sure of the deviation from the neutral stability curve. In particular, o 0 may be chosen 
equal to zero. Substituting the expansions written above in the original system of equations 
for the perturbations and transforming to the variable q, we obtain in the main approximation 
the system of equations 

+ ~  u o + ' g "  d--~- 

r uo + + ~ Vo--7 g~176 r d~ + + 0 o = 0 ,  ( 2 . 1 )  

we = --dvo/d~l,: Po = --~dvo/dTI -}- aoUwo/ T,  

where U, T, ~ are the velocity, temperature, and viscosity coefficient in the original flow 
and Pr is the Prandtl number. It is assumed that the viscosity is a function of temperature. 
In Eq. (2.1) and below all functions referring to the fundamental flow as well as derivatives 
thereof with respect to y are calculated at a point, the coordinate of which, y+, is still 
unknown. The first three equations of Eq. (2.1) canbe separated, and from the condition 
of their solubility we obtain an expression relating y+, g0, ~ 

r d y J k T  + U 2 aT {%U ~ ) = 0 .  ( 2  2 )  

All the unknown functions can be expressed in terms of v0: 

u~ = r ~" + bt ' We = - - - d ~ - '  ( 2 . 3 )  

vo i(Oo U , dv  o (OoU ~). 
Oo = T dU l k -1- e r ) '  Po = - -  d~l k T + 

At this stage the function v0(q) remains undefined. In the next approximation we arrive at 
the equations 

O'OU ) Vl dU 
-{- ~ Ul -[- T dy F1 ('q)' 

r u~ + + ~ v~ - -  -~TgoO~ = F2 (n), -F d---f + + O, = F, (~), 

(2.4) 

F2 (~i) = - -  - - ~  Uo + ~ g~Oo - -  2goUo~l dy r ~lVo ~ - -  + ~ + 2go~iOo dy r ' 

a__ { •  ar / _ nee a 
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The condition for solubility of Eq. (2.4) has the form 

[~o U ~ 2Ugo/~ ~ 

Equation (2.5) contains terms proportional to n and gl. If Eq. (2.2) is satisfied, it can 
be shown that for the validity of Eq. (2.5) it is necessary to take gl = 0. As a result, 
with the aid of Eqs. (2.2), (2.5) we find y+, go for a given value of o0. Substituting in 
Eq. (2.5) the expressions for FI, F2, F s from Eq. (2.4), then using Eqs. (2.3), (2.2), we 
arrive at an equation defining y+: 

d d U  d ( U ~ d T )  

/%u 

)] ) + Ta dv /%U dv + + ~  T~ dv + ~ + ~  = 0 .  ( 2 . 6 )  

I f  t h e  Math number  M i s  e q u a l  t o  z e r o  and T = c o n s t ,  o0 = 0, i t  f o l l o w s  f rom Eq. ( 2 . 6 )  
t h a t  y+ c o r r e s p o n d s  t o  t h e  c o o r d i n a t e  o f  t h e  maximum o f  t h e  f u n c t i o n  U ( y ) d U / d y  [ 1 1 ] .  I n  t h e  
t h i r d  a p p r o x i m a t i o n  we o b t a i n  t h e  f o l l o w i n g  s y s t e m :  

v~ dU [%U ) 
"V W" + ~ ('-t-- + ~. = S~ (~), 

2u~o ~ ~ o + ( . ~ + ~ ) ~ , ,  U~ (2.7) " - - 7 -  o~ = 33 (n), 

. ~ a r  /~o v ~ )  
T av + ~--t-- + e~ = s~ (n). 

The expressions for SI, S2, S 3 are given in the appendix. The condition for solubility 
of Eq. (2.7) coincides with that for Eq. (2.5), it being necessary to replace Fj in Eq. (2.5) 
by Sj (j = i, 2, 3). If using Eq. (2.4) we express ul, O I in terms of v I and substitute them 
in the expressions for $I, $2, Ss, then from the corresponding condition for solubility of 
Eq. (2.7) we obtain a differential equation for v0(~): 

Ad~vo/dq 2 --  ~2Bvo --i~voC = 0. ( 2 . 8 )  

The coefficients A, B, C appearing in Eq. (2.8) are written out explicitly in the appendix. 
Following [ii], we transform to the variable ~ = 4~(B/A) 1/4 and obtain from Eq. (2.8) 

d ~  '~2Vo ' .  c ( ~ )  1/2 d~ ~ 4 - - T g ~ . .  = 0 .  ( 2 . 9 )  

A s o l u t i o n  o f  Eq. ( 2 . 9 )  wh ich  d e c a y s  as  ~ + • was i n d i c a t e d  in  [11]: v0 = exp ( - ~ 2 / 4 ) H m ( ~ )  
(where H m is a Hermitian polynomial). The unknown constant g2 is then defined by the condi- 
tion 

=-~ (l + 2m) ( m =  0, i ,  2 . . . .  ). ( 2 . 1 0 )  

The v a r i o u s  v a l u e s  o f  t h e  p a r a m e t e r  m in  Eq. ( 2 . 1 0 )  c o r r e s p o n d  t o  v a r i o u s  modes o f  t h e  p r o b l e m  
o f  b o u n d a r y  l a y e r  s t a b i l i t y  on a c u r v e d  s u r f a c e .  I n  t h e  p r e s e n t  s t u d y  we w i l l  c o n s i d e r  o n l y  
t h e  f i r s t  mode c o r r e s p o n d i n g  t o  m = 0. R e s u l t s  o f  n u m e r i c a l  c a l c u l a t i o n s  o f  y+,  go ,  g :  f o r  
o 0 = 0 and various M are presented in Table i. The calculations were performed for a ther- 
mally insulated surface at Pr = 0.72 with adiabatic index 7 = 1.4. The viscosity was assumed 
to depend on temperature by the Southerland expression. The braking temperature was 310 K. 

3. Approximate Relationships. As was shown in [12], asymptotic analysis of the problem 
as ~ + ~ gives good results for formal use of the expressions obtained for ~ ~ I. The asymp- 
totic results are convenient in that instead of the complex procedure of solution of systems 
of differential equations one needs solve only algebraic equations, which can easily be pro- 
grammed for numerical analysis. It proves that with formal use of the asymptotic relation- 
ships for $ = O(i), o ~ i the coordinate y+ is located at a short distance from the wall. 
Therefore to obtain approximate relationships one can use an expansion of all functions of 
the fundamental flow in Taylor series in the vicinity of y = 0. We will limit ourselves to 
the first terms of the expansions. Then from Eq. (2.6) for Pr = i with the viscosity linearly 
dependent on temperature 
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TABLE 1 

I "Y + go g~ 
I 

0 ] 2,t6 
t 2,85 
3 5,11 

2,96 
4,08 

14,50 
2,86 
3,62 

t0,72 

= 2 r 
~o T J U w y + ,  (3.1) 

where the prime indicates differentiation with respect to y, and the subscript w indicates 
that the given function is calculated at y = 0. The proposed approximate relationships will 
more precisely approximate the asymptotic solutions found when the surface flowed over is 
thermally isolated and boundary layer suction is absent, since in this case the second term 
of the expansion in powers of y+ vanishes. Thus, the error of Eq. (3.1) is of the order 
O(y+). The approximate relationships are convenient only for y+ + 0, which imposes a corre- 
sponding limitation on o 0 in Eq. (3.1). A precise estimate of the admissible values of o 0 
must be determined from consideration of the residual term in Eq. (3.1). As is evident from 
comparison of numerical calculation results with the approximate relationships, the latter 
give satisfactory results even for o > i. 

After all necessary calculationswe obtain the following expressions: 

= 2 T ~ / ( ( U ~ )  2 y + )  = = 1/2 y l )  = (3 .2)  

G = + = 2T  g /Ug + 

Considering that on a thermally isolated surface without boundary layer suction T w = (i + 
! 

0.5(~ - I)M2), U w = 0.332, from Eq. (3.2) we find 

G = ]/6.02(t -f- 0,5(V -- l)M~)2a~ 2 + 1.4t~/~ ~. (3 .3)  

Figure 2 shows a comparison of direct numerical solution of the problem for M = 3 from 
[i0] (solid lines) and of a calculation with approximate equation (3.3).i We recall that the approx- 
imate expressions (3.1)-(3.3) are inapplicable as o + 0. Figure 2 also shows the asymptote 
for the neutral stability curve (dashed line). From Eq. (3.3) we can find an equation for 
the line of maximum intensification rates in the plane ($, G): 

G =  12.4~a/~(i -[- 0.5(y -- t)M*) ~. (3 .4 )  
Figure 3 shows a comparison of calculation results from [i0] (lines) with those obtained 

by the approximate equation (3.4). It is evident from Figs. 2, 3 that the approximate re- 
lationships reflect the direct numerical calculation results properly. Their simplicity 
makes them useful for approximate calculations as used in engineering practice. 

The authors express their gratitude to V. N. Zhigulev for his kind evaluation of the 
results of the study. 

dq 1 
$1 = "7" Ul'q dy 

$3 

APPENDIX 

OoU ooU 
ql - - 7 -  + l~' q2 =--T-- + ~-~', 

Oo 
- -  - -  u , ~  dy ~ r dy ] - -  ~ ~ dy ~ ~ r ~ - ~  ': TI dyZ 

T + ~ O~ - -  2g~ ~ - -  g~176 ~ - -  vl~ dy 

d t =__Vl,_~.-(.~.. d~  ) VO 2 ~ [  t dT~ dq2 ~Ol]2d2q__.22.~ ~ d20o 
- -  2 'q dy 2 ~ T dy ] O1T] ~ -- dy ~ Pr dTi 2' 

2U dU q2 p~ U 2 dT ql 
A = - ~ - ~  ql er T 3 dy g o ~ + q l q s ( q l + ~ ) ,  

[ d ( U ) ]  [ t dU dqt d ( ~  d U ) ]  
B = -- 2g o %U dql q2 - ~  "-T- ~1 r dy dy dy " ~  - -  qzT dy 
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[ �9 I )] d T  

--go ql dv \ r~ ] T~% -~-~ q;T dy dy dy 

( ) goq  dr (v goV q d {L r  go d U d  2 U qlq2 d2q_.__ ! + + _ _  __ 

T q2 ~ ~ -T- + 2 dy 2 2T dy du~ T 2T 2 dy ~ ~ r dU ] 

goUZql dT d2qz goUq2 dU d2q, [U d 2 { ]..t_. dU) 
- -  + dy d " g~ -"T- qe'-~y2 k T dy ]' 2T3q2 dg dg z Tql N- 

C = U2q..-----~l d-!--T 2Uq 2 dU 
T 3 dy T ~ dy " 
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